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The dynamics of small perturbations on a buoyant coastal current is investigated.
The system is described using a one and a half-layer model where the active upper
layer vanishes at a certain distance from the coast, forming a front. Perturbations are
imposed on a steady basic state with no along-coast variation. Analytical solutions
are discussed for two special configurations of the basic state: (i) constant along-shore
velocity, i.e. a coastal current with triangular cross-section, and (ii) a constant potential
vorticity current. Two wave modes are found in both cases: a slowly moving frontally
trapped wave, and a coastally trapped wave that moves with approximately the
internal Kelvin wave speed plus the speed of the current at the coast. However, these
two wave modes are not sufficient to construct a generally shaped initial perturbation.
The part of the initial perturbation not covered by the two wave modes will in case (i)
split into an infinite number of higher wave modes all travelling faster than the frontal
wave and in case (ii) be advected and slowly smeared out by the current. Under the
assumption that the current is unidirectional we find that the perturbations always
move in the direction of a Kelvin wave, i.e. in the same direction as the coastal
current, for all physically relevant cases.

1. Introduction
We investigate the propagation and deformation of a perturbation on a buoyant

coastal current. Our aim is to give some insights concerning fluctuations observed in
coastal currents.

1.1. Properties of buoyant coastal currents

Buoyant coastal currents form when light surface water is accumulated along a coast.
Because of the Earth’s rotation the light water will not spread over the ocean surface
but rather form a current along the coast, with the coast to the right (left) of the
current on the northern (southern) hemisphere. A coastal current is typically narrow
compared to the size of the ocean basins, with a density front constituting the seaward
edge of the current. The buoyant water can be accumulated at the coast by different
processes; winds may force buoyant surface water towards the coast, or fresh water
supply from rivers may lead to buoyant brackish water along the coast.

Buoyant coastal currents are important for both the basin scale circulation and for
local conditions. For instance, along the Swedish west coast much of the brackish
water leaving the Baltic is transported by a coastal current into the Skagerrak and
the northern North Atlantic (Rodhe 1998). In the northern North Atlantic, the East
Greenland Current and the Norwegian Coastal Current are dominating features,
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important for the exchange between the Atlantic and the Nordic seas (Hansen &
Østerhus 2000).

Variations in the forcing, through changes in the wind field or the river runoff,
will change the transport properties of the current. We study the development and
propagation of such changes of small amplitude.

1.2. The problem under consideration: development of perturbations

The perturbations examined in this study consist of disturbances in the thickness
of the surface layer with an amplitude small enough to allow linearization of the
equations. We treat the development of the disturbance as an initial-value problem by
superposing the perturbations on a stationary basic state. The initial perturbation can
have arbitrary shape, provided that the along-current length scale of the perturbations
is much greater than the width of the coastal current.

The basic state consists of a homogeneous buoyant upper layer, constituting the
coastal current, with a motionless layer of denser water beneath. Some distance away
from the coast the upper layer vanishes, forming a density front. The basic state is
assumed to be in geostrophic balance, with no variations along the coast. While the
along-coast current velocity may vary in the cross-current direction, we require that
it does not change sign. The coast is treated as a vertical wall.

To illuminate the evolution of perturbations on these coastal currents we examine
two analytically tractable cases. The first case is a coastal current with triangular
cross-section, i.e. the upper-layer thickness decreases linearly away from the coast. The
second case is a basic state with constant potential vorticity. In the triangular cross-
section case, which can be treated as an eigenvalue problem, we obtain an infinite
number of wave modes. These modes are absent in the constant potential vorticity
case, where instead parts of the perturbation are advected and deformed by the shear
flow. However, two wave modes can be found in both cases; a frontally trapped
slowly propagating wave and a coastally trapped fast wave.

1.3. Earlier works

Many authors have contributed to the theory of coastal currents and coastally trapped
waves; Csanady (1982) provides a good overview of coastal phenomena in general.
Here follows a brief summary of previous efforts concerning perturbations on coastal
currents with bearing on the physical situation examined in the present work.

The stability of coastal currents to long-wave perturbations has been studied in
some detail by Killworth & Stern (1982). They showed that coastal currents with
close to constant potential vorticity are unstable if the current is not unidirectional.
Furthermore, they showed that a more generally shaped coastal current is unstable
provided that the following conditions hold at the wall: the alongshore current speed
is zero and the potential vorticity is non-zero and increasing towards the wall. Notably,
no maximum in the potential vorticity of the flow is needed for these instabilities to
occur. In the present work we will only consider stable currents.

Stern (1980) and Paldor (1988) investigated perturbations on coastal currents with
zero potential vorticity. Stern studied finite-amplitude perturbations and identified
several classes of perturbations, e.g. perturbations that steepen with time or block the
transport in the current. Paldor used expansion techniques to study perturbations and
found the existence of solitons, governed by the Korteweg–de Vries equation. Both of
these studies were restricted to perturbations chosen in such a way that not only the
basic state but also the perturbed state had zero potential vorticity. Accordingly, the
development from an initial perturbation of arbitrary shape was not considered.
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Figure 1. A cross-section of the coastal current, where the variables are outlined.

Kubokawa & Hanawa (1984) studied waves on a coastal current with constant
but non-zero potential vorticity. They found two wave modes; a Kelvin wavelike
‘semigeostrophic coastal wave’, and a ‘semigeostrophic frontal wave’, the latter having
its maximum amplitude at the front. The coastal wave propagates downstream faster
than the current, while the frontal wave propagates upstream relative to the current
velocity. In the present work we find waves similar to these two wave modes as a part
of the solution. Kubokawa & Hanawa (1984) also investigated some aspects of the
nonlinear development of the two wave modes.

In three of the mentioned papers (Stern 1980; Paldor 1988; Kubokawa & Hanawa
1984), the choice of perturbations was restricted to cases where no perturbation in
the potential vorticity occurs. While this restriction simplifies the analysis, it cannot
describe a more general case. For example, wind forcing will, in general, cause a
perturbation of the potential vorticity field. Here, we study perturbations of arbitrary
initial shape.

1.4. Outline of work

The paper is organized as follows. In § 2 a model for small perturbations on a coastal
current is developed. We show that the problem can be reduced to a single partial
differential equation with the perturbation of the upper-layer thickness as dependent
variable. In § 3 we present analytical solutions for a current with triangular cross-
section, and discuss the nature of the solutions. In § 4 we present analytical solutions
for a current with constant potential vorticity, and discuss the properties of the
solutions using an illustrative example. Section 5 contains a summary of our results
and a brief discussion of the shortcomings of the model. On the basis of the solutions
presented in § § 3 and 4 we discuss the implications of our findings for coastal currents
in general.

2. The model
We study small perturbations on a stationary, strictly geostrophic coastal current

along a vertical wall, as illustrated in figure 1.

2.1. Governing equations

Our model consists of an upper layer with density ρ − �ρ overlying a motionless
lower layer with density ρ, on an f -plane. Neglecting friction, observing that the
pressure gradient can be written in terms of the upper-layer thickness and assuming
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that the pressure gradient in the lower layer is zero, the momentum and continuity
equations for the upper layer are:

ut + uux + vuy − f v = −g′hx, (2.1)

vt + uvx + vvy + f u = −g′hy, (2.2)

ht + (hu)x + (hv)y = 0, (2.3)

where g′ = g�ρ/ρ, f is the Coriolis parameter, h is the thickness of the upper layer,
and {u,v} are the velocities in the {x,y}-direction, respectively. A straight coast,
parallell to the y-axis, is located at x = xc. The seaward front, where the unperturbed
upper layer vanishes, is located at x = 0 (cf. figure 1).

Introduce a small perturbation by splitting u, v and h into two parts; a basic state
(denoted by bars) and a small perturbation (denoted by circumflexes)

u = ū + û, v = v̄ + v̂, h = h̄ + ĥ. (2.4)

The basic state constitutes the coastal current, which we demand to be steady, in
geostrophic balance and without along-coast variations. Thus,

ū = 0, h̄y = v̄y = h̄t = v̄t = 0, v̄ =
g′

f
h̄x, h̄(x = 0) = 0. (2.5)

Using this notation in (2.1)–(2.3), and neglecting products of perturbation variables
we obtain the following equations for the perturbation (dropping the circumflexes)

ut + v̄uy − f v = −g′hx, (2.6)

vt + uv̄x + v̄vy + f u = −g′hy, (2.7)

ht + (h̄u)x + h̄vy + hyv̄ = 0. (2.8)

We non-dimensionalize introducing a depth scale H (for instance H = h̄(xc)) and a
non-dimensional parameter δ. The same scaling is used by both Killworth & Stern
(1982) and Kubokawa & Hanawa (1984). Hence,

{u, v, h} = {δau∗, av∗, Hh∗}, (2.9)

{v̄, h̄} = {av̄∗, H h̄∗}, (2.10)

{t, x, y} = {f −1δ−1t∗, f −1ax∗, f −1δ−1ay∗}, (2.11)

where a =
√

g′H . This scaling implies that the horizontal aspect ratio, i.e. the ratio
between the cross- and along-current length scales, is equal to δ. The ratio between
the inertial period and the time scale is also equal to δ. Note that we expect v̄∗ and h̄∗

to be O(1); the perturbation variables u∗,v∗ and h∗ will on the other hand be O(ε),
provided that {h, v} ∼ ε{h̄, v̄}.

We assume that

δ � 1, (2.12)

i.e. the along-current length scale is much longer than the cross-current length scale
and the perturbations vary with a time scale much longer than the inertial period.
Using the non-dimensional variables we rewrite (2.6)–(2.8) (dropping the asterisks),

δ2(ut + v̄uy) − v = −hx, (2.13)

vt + uv̄x + v̄vy + u = −hy, (2.14)

ht + (h̄u)x + h̄vy + hyv̄ = 0. (2.15)
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By combination of (2.13) and (2.14) we obtain expressions for u and v, which can
be inserted into (2.15). Neglecting squares of δ, we derive a single equation for the
perturbations in terms of h only(

∂

∂t
+ v̄

∂

∂y

)(
h −

(
h̄

1 + v̄x

hx

)
x

)
−

(
h̄

1 + v̄x

)
x

hy = 0. (2.16)

Returning to dimensional variables we obtain(
∂

∂t
+ v̄

∂

∂y

)(
h − g′

f

∂

∂x
(Q̄hx)

)
− g′Q̄xhy = 0, (2.17)

where Q̄(x) = h̄/(f + v̄x) is the inverse potential vorticity of the basic state.

2.2. Boundary conditions and the position of the outcropping

The development of a perturbation is determined from (2.17) together with an initial
condition and suitable conditions at the front and the coast. The initial condition is
given by the initial shape of the perturbation, i.e. h(t = 0) = h0(x, y). Below we discuss
the boundary conditions.

At the coast, the flow through the vertical wall must be zero. Neglecting squares of
δ and combining (2.13) and (2.14) gives the following expression for u (in dimensional
variables),

u = − g′

f (f + v̄x)
(f hy + hxt + v̄hxy). (2.18)

Zero flow through the wall thus implies

f hy + hxt + v̄hxy = 0 at x = xc. (2.19)

To illuminate the properties of the frontal boundary we study the outcropping.
If we let the outcropping be located at x = ξ (y, t) we can write the dynamic and
kinematic boundary conditions

h(ξ, y, t) + h̄(ξ ) = 0, (2.20)

u(ξ, y, t) = ξt + (v(ξ, y, t) + v̄(ξ ))ξy. (2.21)

We make Taylor expansions of these equations around x = 0 and neglect products of
variables associated with the perturbation (i.e. ξ , h, u, v). Eliminating ξ between the
equations so obtained, yields

ht + h̄xu + hyv̄ = 0, (2.22)

which is exactly (2.8) evaluated at x = 0. Accordingly (2.20) and (2.21) are
automatically satisfied and add no information. To close the problem some other
condition is required. In the following two sections, sufficient conditions at the front
will come naturally from the requirement that the solutions to (2.13)–(2.15), i.e. h, u

and v, stay bounded.
Note that keeping h bounded is also required for the expansion of (2.20) to be

valid, and that ξ will be bounded if h is bounded. Furthermore, the expansion of
(2.20) gives the position of the outcropping

ξ = −h(0, y, t)

h̄x(0)
. (2.23)
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3. Solutions for a current with triangular cross-section
In this section, we examine perturbations on a basic state where the current speed

does not vary across the coastal current, i.e. where v̄x ≡ 0. Thus, the cross-section of
the unperturbed upper layer is a triangular wedge;

h̄ = Ax, (3.1)

where A is a constant.
We make the ansatz

h = ψ(y − ct)ϕ(x), (3.2)

where c is an unknown wave speed, and apply it to (2.17), yielding

Q̄(v̄ − c)ϕxx + Q̄x(v̄ − c)ϕx + (f Q̄x − f (v̄ − c)/g′)ϕ = 0. (3.3)

Using the expression for h̄, (3.1), we can calculate v̄ and Q̄ and rewrite (3.3) for a
triangular wedge current as

Mxϕxx + Mϕx + cϕ = 0, (3.4)

where

M =
g′A

f 2

(
g′A

f
− c

) [
=

v̄

f
(v̄ − c)

]
. (3.5)

This equation is a transformation of Bessel’s equation and has solutions of the type
(Watson 1944, p. 97)

ϕ = BJ0

(
2

√
cx

M

)
+ CY0

(
2

√
cx

M

)
, (3.6)

where B and C are constants, and J0 and Y0 are zeroth-order Bessel functions of the
first and second kind, respectively.

At the front we require that h, u and v stay bounded. Accordingly, we must set C

to zero, since Y0 → −∞ as x → 0. This will keep u and v bounded also, and enables
us to obtain a unique solution to (3.4) with the help of the boundary condition at the
coast (2.19) and an initial state. Application of the ansatz (3.2) to (2.19) yields

f ϕ + (v̄ − c)ϕx = 0. (3.7)

By inserting the solution ϕ =BJ0(2
√

cx/M), we obtain an equation for c

f J0

(
2

√
cxc

M

)
− (v̄ − c)

√
c

Mxc

J1

(
2

√
cxc

M

)
= 0. (3.8)

This equation has been solved numerically for c. We discuss the solutions in § 3.2.

3.1. More general cases

Using the method of Frobenius we can generalize the treatment of the frontal
boundary condition to a whole family of basic states h̄. If the basic state has a regular
singular point at x = 0, we in general find two solutions, corresponding to (3.6), near
the front, i.e. one bounded and one unbounded at the front. The calculations are
straightforward, but unenlightening.

Observe that (3.3) holds for a general basic state, not only the triangular wedge
examined here. Equation (3.3) together with relevant boundary conditions (i.e. (3.7)
plus a regularity condition at the front), constitutes an eigenvalue problem with the
wave speed c as the eigenvalue. It is important to note that the eigenvalue appears
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Figure 2. The cross-current structure of the first five wave modes, ϕ0, . . . , ϕ4, on a coastal
current with triangular cross-section. The width of the current, xc , is set to 1.5 times the Rossby
radius, R. Observe that ϕ0 has been scaled down by a factor 5.

in the coastal boundary condition (3.7) as well as in (3.3). Thus, we are not dealing
with a Sturm–Liouville problem, implying that a complete set of eigenmodes does
not necessarily exist.

3.2. Examination of the solutions

Let us denote the solutions to (3.8) c0, c1, c2 . . . , with corresponding solutions to (3.4)
labelled ϕ0, ϕ1, ϕ2, . . . where

ϕn(x) = J0

(
2

√
cnx

M(cn)

)
. (3.9)

Inspection of (3.8) indicates that there are an infinite number of possible c if we let
c → v̄, owing to the oscillatory nature of Bessel functions. We find only one case where
c > v̄; we label it c0 and the corresponding solution ϕ0. In all other cases, 0 <cn < v̄,
and we chose to label the wave speeds such that c1 <c2 <c3 . . . .

We have not been able to prove that the set of eigenmodes {ϕn} is complete.
However, we have used the eigenfunctions to approximate successfully a number of
test functions; cosines, exponentials and continuous piecewise linear functions.

Figure 2 shows cross-sections of ϕ0, . . . , ϕ4 for a coastal current with a width of
1.5 internal Rossby radii. We note that ϕ0 is the only solution that decays away from
the coast; all other solutions decay towards the coast, with shorter across-current
‘wave-length’ as n → ∞. In figure 3, we have plotted the wave speeds of the first four
modes as functions of the width of the coastal current. The wave speeds are scaled
with the internal Kelvin wave speed

c∗ =

√
g′h̄(xc). (3.10)

We allow the slope A to vary with xc in order to keep h̄(xc) constant. In the limit of
an infinitely wide current (i.e. xc → ∞), c0 is equal to c∗, while cn =0 for n> 1. When
the width of the current is finite, c0 is somewhat smaller than the sum of the current
speed v̄ and the speed of an internal Kelvin wave c∗ while c1 is significantly slower



344 O. H. Dahl

0.5 1.0 5.0 10.0
–1

0

1

cn – v
c*

xc /R

n = 0

n = 3

n = 2

n = 1

Figure 3. The curves show the wave speed minus the current speed, normalized with the
Kelvin wave speed, as a function of the width of the coastal current. Each curve corresponds
to a different wave mode ϕn on a triangular cross-section current.

than the current speed. For larger values of n, the wave speed quickly approaches the
speed of the current, i.e. the higher-order wave modes are more or less advected by
the current.

4. Solutions for a constant potential vorticity current
In simple models of fronts and coastal currents it is often assumed that the current

has constant potential vorticity (Kubokawa & Hanawa 1984; Killworth & Stern
1982, § 3). This assumption can be justified by requiring that the current originates
from a body of water with homogenous potential vorticity. Since potential vorticity
is conserved for fluid particles in the absence of diapycnal mixing and friction, the
potential vorticity will then stay constant (Pedlosky 1987).

In this section we will study perturbations on a basic state with constant potential
vorticity. For convenience, we have used the inverse potential vorticity as a parameter
rather than the potential vorticity itself. The basic-state upper-layer thickness h̄, can
be derived from the requirement that the inverse potential vorticity Q̄ = h̄/(f + v̄x)
is constant. Since we do not allow any along-current variations and demand that h̄

vanishes at x =0, the thickness of the unperturbed upper layer will be given by

h̄ = f Q̄ + A1e
−x/RD + A2e

x/RD , (4.1)

where

A1 + A2 = −f Q̄, (4.2)

and

RD =

√
g′Q̄

f
. (4.3)
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This case has three degrees of freedom; we can choose e.g. Q̄, xc and A1 independently.
In this study, we limit these parameters to cases where h̄ is growing monotonically
towards the coast, implying that the along-current velocity v̄ is always positive.

The eigenvalue approach used in § 3 cannot be used here. Since Q̄x = 0, the last
term on the left-hand side of (3.3) disappears. We can thus remove the eigenvalue
by dividing all terms by v̄ − c. The resulting expression cannot describe an arbitrary
initial perturbation; instead we have to derive our solutions directly from (2.17).

Now, since Q̄x = 0, (2.17) reduces to(
∂

∂t
+ v̄

∂

∂y

)(
h − R2

Dhxx

)
= 0, (4.4)

which implies that

hxx − 1

R2
D

h = Ψ (x, v̄(x)t − y), (4.5)

where Ψ is given by the initial distribution of h

Ψ (x, −y) =

(
hxx − 1

R2
D

h

)∣∣∣∣
t=0

. (4.6)

Note that the perturbation of the inverse potential vorticity may be written as(
h − R2

Dhxx

)/
(f + v̄x) (4.7)

and that (4.4) thus states that potential vorticity is conserved for fluid particles.
Equation (4.5) can be solved using the method of variation of parameters, yielding

(Bender & Orszag 1978, p. 15):

h = C(y, t)e−x/RD + D(y, t)ex/RD + RD

∫ x

0

Ψ (ξ, v̄(ξ )t − y) sinh

(
x − ξ

RD

)
dξ. (4.8)

Let us now examine the front. In (4.8), h̄ and v̄ stay bounded as x → 0. As a
consequence the approach from § 3 does not work here. However, we can obtain a
boundary condition for the front from (2.18) by noting that f + v̄x → 0 as x → 0.
Accordingly, |u| → ∞ unless we require

f hy + hxt + v̄hxy = 0 at x = 0. (4.9)

Using this as the frontal boundary condition we can close the problem. Note the
similarity between (4.9) and the coastal boundary condition (2.19).

4.1. The special case Ψ = 0

Let us first consider the case where the potential vorticity of the perturbed state is
the same as for the basic state, i.e.

Ψ = 0. (4.10)

Setting Ψ = 0 implies that the integral term of (4.8) vanishes. Thus, the initial
distribution of the perturbation must be of the form

h = G1(y)e−x/RD + G2(y)ex/RD at t = 0, (4.11)

where G1 and G2 are arbitrary functions.
Using the boundary conditions, (2.19) and (4.9), we find two wave modes h0 and

h1 of the form

hi = Bi(cit − y)
(
e−x/RD + φie

x/RD
)

(i = 0, 1), (4.12)
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Figure 4. The propagation speeds of waves on a constant potential vorticity current: (a) iso-
lines of (c0−v̄(xc))/c∗, (b) isolines of (c1−v̄(0))/c∗. The structure of the current is given by A2/A1

and the width of the current xc/RD . Below the dashed line v̄(xc) >c∗ and above the thick line
the current would go backwards at the coast, i.e. it would be unstable (Killworth & Stern 1982).
Thus, the most physically realistic cases are found between the dashed and the thick lines.

where the wave speeds ci and the constants φi are given by the boundary conditions.
Bi are determined from the initial condition, (4.11). The sum of h0 and h1 can satisfy
any initial condition for which Ψ = 0.

The two wave modes have different properties. One mode, here labelled h0, has
its largest amplitude at the coast and travels downstream faster than the maximum
speed in the current. The other mode, h1, has its largest amplitude at the front and
travels slower than the minimum speed of the current. The two wave modes closely
resemble the modes ϕ0 and ϕ1 from the triangular cross-section case.

Figure 4 show isolines of the wave velocities c0 and c1 minus the current speed
at the coast and the front, respectively, scaled with the internal Kelvin wave speed,
c∗. To show the variation with different configurations of the background current
we have plotted the isolines in the space spanned by the quotient A2/A1 and the
non-dimensional width, xc/RD , of the coastal current.

The ratio A2/A1 is small in most geophysical applications since the variation of
h̄ tends to be largest close to the front (cf. 4.1). If A2/A1 > 0 (the upper part of the
diagrams) the flow is stable only if A2/A1 is sufficiently small (Killworth & Stern
1982). If A2/A1 < 0 (the lower part of the diagrams), the along-coast current speed
becomes large close to the coast for wide currents. Increasingly negative A2/A1 implies
that the Richardson number at the coast grows unrealistically large. In figure 4 we
have plotted the curve v̄(xc) = c∗ (the dashed line), corresponding to a Richardson
number equal to one, with the Richardson number defined as

Ri =
c2

∗
v̄(xc)2

. (4.13)

In general, c1 is positive and close to zero for most realistic coastal currents. For
practical purposes, such as comparison with measurements, the wave speeds can be
approximated as

c0 ≈ v̄(xc) + c∗, (4.14)

c1 ≈ v̄(0) − c∗. (4.15)
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This approximation becomes more accurate when |A2/A1| is small. If A2 = 0, and thus

h̄ = f Q̄
(
1 − e−x/RD

)
, (4.16)

the error is smaller than 0.06 c∗ for all choices of xc/RD . If the current is infinitely
wide and A2 = 0 the approximation becomes exact. In that case the front and the
coast will both be equivalent to a wall where the depth of the upper layer is equal
to f Q̄. This gives waves with the same properties as ordinary internal Kelvin waves
advected by the current speed at the respective boundary.

Both Killworth & Stern (1982) and Kubokawa & Hanawa (1984) derive waves
similar to the two wave modes found here. Killworth & Stern (1982) focus on insta-
bilities and do not describe the waves in any detail. Kubokawa & Hanawa (1984) find
a ‘semigeostrophic coastal wave’, corresponding to the h0 mode (4.12), and a ‘semigeos-
trophic frontal wave’, corresponding to h1. However, these waves cannot satisfy an
arbitrarily chosen initial perturbation, and we extend our analysis to cover an arbitrary
initial perturbation in the next section.

4.2. The case Ψ �= 0

Knowing the solutions (4.12) to the case with Ψ = 0, we rewrite the solution to the
general case (4.8)

h = C0(y, t)
(
e−x/RD + φ0e

x/RD
)

+ C1(y, t)
(
e−x/RD + φ1e

x/RD
)

+RD

∫ x

0

Ψ (ξ, v̄(ξ )t − y) sinh

(
x − ξ

RD

)
dξ, (4.17)

where C0 and C1 are unknown functions of y and t . Applying the boundary conditions
(2.19) and (4.9) we can, after tedious algebra, show that C0 and C1 are given by

Ci = Bi(cit − y)

+
2RD

(
1 − φie

2xc/RD

)(
φ2

i e
2xc/RD − 1

)
cosh(xc/RD)

∫ t

0

∫ xc

0

Ψ2(ξ, (v̄(ξ ) − ci)τ + cit − y)

×
[
(v̄(ξ ) − v̄(xc)) cosh

(
xc − ξ

RD

)
− RDf sinh

(
xc − ξ

RD

)]
dξdτ for i = 0, 1,

(4.18)

where

Ψ2(x, η) =
∂

∂η
Ψ (x, η) (4.19)

and B0 and B1 are functions of a (cit − y) only. B0, B1 and Ψ are determined from
the initial condition, with Ψ defined by (4.6).

In figure 5(a–c) we show an example of the development from an initial perturbation
given by

h(x, y) = Ae−(y/Lp)2, 0 � x � xc, (4.20)

where Lp = 7RD sets the length scale of the perturbation and A the amplitude. The
basic current structure is given by (4.16), with xc = 2RD , and is illustrated in figure 5(d ).
With the help of (4.17) and (4.18) we can interpret figure 5 and give some predictions
of the development of an initial perturbation with limited along-coast extension in
general. The shear, represented by v̄(ξ ) under the integral sign, will slowly smear out
the contribution to h from the third term on the right-hand side of (4.17). In the
long time limit the integral tends to zero in every point, leaving us with the wave
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Figure 5. (a–c) show snapshots from the development of an initial disturbance given by
(4.20), with Lp = 7 RD , on a constant potential vorticity current, seen from above. The isolines
are equidistant in h, with the dashed one representing h = 0. Note that the amplitude of
the frontal wave mode (cf. (c)) is much larger than the amplitude of the initial disturbance
(cf. (a)). (d ) shows the depth of the background current.

solutions, h0 and h1, discussed in § 4.1. Thus, an observer will, in the long time limit,
only see a coastal and a frontal wave. In figure 5(c) we can see how the two waves
have separated. The integral term in (4.17) is reduced in amplitude, as it is smeared
out over the whole area between the two waves.

Note that the three terms on the right-hand side of (4.17) cannot be interpreted as
three independent wave modes; the integral (the third term) contains contributions
to the coastal as well as the frontal wave mode. This leads to an apparent growth
or decline of the amplitude of the coastal and frontal waves, as exemplified by fig-
ure 5(a–c); the frontal wave in figure 5(c) has about twice the amplitude of the initial
perturbation in figure 5(a). For large t , when the waves and the integral term in (4.17)
have separated, C0 and C1 become functions of (cit − y) only, and (4.18) gives the
amplitudes of the coastal and frontal wave modes.

5. Concluding remarks
5.1. Summary

This study outlines the development of a small initial perturbation on a buoyant
coastal current along a vertical wall, overlying a motionless deep layer. The basic
state is stationary and without variations along the coast. Under the assumption
that the perturbations are long compared to the width of the current, we derive an
equation for the development of the perturbation (2.17). Making a wave ansatz (3.2),
we find that the possible basic states can be divided into two mathematically different
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categories. (i) Except for certain special cases application of the ansatz leads to
an eigenvalue problem with the wave speed c as the eigenvalue, as detailed in § 3.
(ii) If the basic state has constant potential vorticity the eigenvalue disappears from
the governing equation (2.17), but remains in the boundary conditions. Solution of
the degenerate eigenvalue problem leads to the two wave solutions presented in § 4.1.
The full solution for a basic state with constant potential vorticity cannot be obtained
by making a wave ansatz, as detailed in § 4.

We solve the problem analytically for two special cases, one in each category. In the
first case, which belongs to category (i), we have chosen a basic state with constant
current speed, implying that the upper layer has a triangular cross-section. We obtain
an infinite number of wave mode solutions to the eigenvalue problem. All modes
except one have their maximum amplitude at the front and move slower than the
current speed. The first and fastest mode, ϕ0, has its maximum amplitude at the coast
and moves almost with the speed of an internal Kelvin wave plus the current speed.
The second mode, ϕ1, is the slowest; it is almost stationary, moving slowly in the
same direction as the current. High-order modes are almost advected by the current,
moving only very slowly relative to the basic current.

In the second case we investigate a basic state where the upper layer has constant po-
tential vorticity. We find two wave modes similar to the fastest and slowest mode of the
triangular cross-section case. The complete solution to the constant potential vorticity
case also includes a non-wavelike part which is advected and deformed by the current.

Despite the fact that the mathematical properties of the two cases are different, the
solutions show pronounced similarities. In both cases, the solution can be divided into
three parts: a frontal wave mode; a coastal wave mode; and a part that moves more
or less with the current. This result suggests that perturbations on a more general
basic state probably evolve in much the same way as in the two investigated cases.

5.2. Consequences of arbitrary initial perturbations

In the present work, unlike earlier works, we consider the development of arbitrary
initial perturbations. We have noted two features that deserve special attention.
(i) Parts of the perturbation will essentially be advected by the current. (ii) The ampli-
tude of the coastal and frontal waves may deviate significantly from the amplitude of
the initial perturbation, owing to the superposition of wave modes. This phenomenon
is illustrated in figure 5(a–c), where the amplitude of the frontal wave mode is more
than twice as large as the amplitude of the initial perturbation.

5.3. Waves on triangular cross-section currents

Wave perturbations on a basic state with triangular cross-section attached to a coast,
have to our knowledge not been analysed previously. However, Cushman-Roisin
(1986) derived solutions for an arbitrary small initial perturbation on a triangular
cross-section current far from a wall. The solutions contain a set of wave modes
that have similar cross-current structure to those found here, but different dispersion
properties. The scaling assumptions used by Cushman-Roisin also deviate from our
assumptions. Here, we assume that the cross-current length scale is of order R, the
internal Rossby radius, while Cushman-Roisin assumes that all length scales are much
larger than R.

5.4. Perturbations as meanders

Perturbations on natural currents often develop into meanders and eddies on the
front, see for example Johannessen et al. (1989). As can be seen from (2.23) the
displacement of the outcropping is proportional to the amplitude of the perturbation
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at x = 0. Since the frontal wave modes have their maximum amplitude at the front,
meanders will mainly be described by these modes. Thus, stationary meanders would
essentially be manifestations of the first frontal wave mode, whereas moving meanders
correspond to the higher-order modes. The interaction between topography and the
first frontal wave mode is of special interest. If a topographic feature excites the
almost stationary first frontal wave mode we expect a growing meander. Since the
topography may continuously supply energy to the wave, even a relatively small
topographic feature could lead to a large stationary meander.

5.5. Limitations of the model

Our analysis has some obvious limitations. Most importantly, the presence of a
sloping topography will necessarily lead to motions in the lower layer, breaking one
of the main assumptions of the analysis. A sloping coast, in contrast to a vertical wall,
will also allow topographic wave modes, cf. Csanady (1982).

We expect that an active lower layer leads to changes in the propagation speed of
the waves and possibly to instability. Killworth, Paldor & Stern (1984) examined a
free front far away from a wall, overlying an active lower layer with no motion in the
basic state. They showed that the front is always unstable to long waves. When the
thickness of the lower layer was decreased the growth rate and propagation speed of
the waves increased. Kubokawa (1988) and Paldor & Ghil (1991) studied instabilities
on a coastal current with zero potential vorticity overlying an active lower layer, but
also found linearly stable regimes when the lower layer was deep enough.

Friction, both against the wall and through mixing at the front, is not included in
the model. The presence of friction would not only affect the perturbations, but also
the basic state; a consistent basic state would either be non-stationary or changing
along the coast. We also expect the perturbations to become damped.

Furthermore, we have not taken critical layers into account, i.e. areas around points
where the wave and current speed are equal (v̄(x) = c). The presence of critical layers
will complicate the analysis; either turbulence or nonlinear effects will be important
there. The triangular wedge case has no critical layers, while the constant potential
vorticity case has two regimes where critical layers can occur. In a current with a flow
reversal, the presence of a critical layer leads to instabilities as proved by Killworth &
Stern (1982) (the area marked ‘Unstable’ in figure 4). The other regime where constant
potential vorticity currents have a critical layer is characterized by unrealistically high
current speeds at the coast. (The area below the curve (c0 − v(xc))/c∗ = 0 in figure 4a).
Finally, it should be noted that basic states with zero potential vorticity as used by
Stern (1980) and Paldor (1988) are not included in the present analysis.
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